她需要在此基础上,继续提升弹体材料的性能,达到两三千度起步的超高温下,依然能够保持机械性能,甚至是0烧灼。
这样,对材料性能的要求,就不只是单纯的钢材料能够达到的。合金材料,吴桐同样玩得娴熟,在思考问题的时候,吴桐已经在同步考虑,什么样的材料最能耐高温。
??第三三一章 金属基
如今的吴桐,在不断的大量迅速学习、理解掌握和时间的积累下,知识储备已经可以说是博文广记,堪称行走的图书馆。
各种材料信息,可以说是信手拈来。
瞬时,物理界十大耐高温材料的细致资料,就从吴桐的储备记忆中跳跃而出,浮现在吴桐的脑海之中。
目前自然界中,当今世界上熔点最高的物质,是铪合金。铪合金含有金属元素铪,已知熔点最高的物质是铪的化合物,五碳化四钽铪Ta4HfC5,熔点4215摄氏度。
排名第二的是石墨,石墨是元素碳的一种同素异形体,石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。
位列第三的是金刚石,也就是我们俗称的“金刚钻”,也是常说的钻石的原身,也是由由碳元素组成的矿物,同样是碳元素的同素异形体,也是目前已知自然存在最硬物质,熔点在3550℃。只是金刚石所有的价电子都参与了共价键的形成,没有自由电子,且不导电。
前三各有优劣,但是多多少少,都有些不适合。
吴桐更多的目光,是放在排名第四的金属钨上面,钨的原子序数74,原子量183.84,熔点3400℃。
它呈钢灰色或银白色,具有硬度高,熔点高,常温下不受空气侵蚀···优点,是很好的弹体材料选择,最关键的是,中华还是是世界上最大的钨储藏国,不会因为钨若是大面积使用,储量不够,会被国际卡脖子。
作为最耐热金属,钨及钨合金,其实已经走入了航天航空科研工作者的眼中,它的密度大,强度是难熔金属中最高的,弹性模量高、膨胀系数小、蒸气压低。
添加了合金元素的钨合金具有良好的耐磨性、耐蚀性、导电性和导热性。航空航天设备的机构设计和安全性能问题与所采用的材料物理化学和机械特性有着十分密切的关系···
金属钨具有一系列优良物理、化学性能,可以满足航空航天所需材料性能的要求,所以现在已经越发广泛应用于卫星、飞行器、航空发动机等装备的一些关键部件。
绝对推衍本能,绝对推演方向的肯定,也同样告知吴桐,她的选择没有错。纯金属钨难以加工及脆化的缺憾,直接作为弹体材料使用肯定是不行的。
不然,国内弹体材料早就用上了,不用等她在这里现用现推衍新材料。
她需要在此基础上,推衍出能够正确利用钨,并且还要保持钨的优越性能的工艺技术,研发出新型钨材料,以用在最关键的弹头材料上。
时间在吴桐的研发中,悄悄溜走,带来了春天的气息,也带来了吴桐丰收的喜悦。
正向利用材料性能,且能同比增加材料性能的单晶技术,自然地被吴桐用上,经过大幅度的计算,推演,不算艰难的,推导出了适用于弹头材料的单晶钨。
这一步,最难得,就是其中的晶格排列延展顺序。
时至今日,吴桐对共键效应更有感悟这是她的拿手绝活。晶格的排列,可以说是在吴桐手中,玩出了新篇章。
一张张手稿,被吴桐堆叠在桌角,验证着,吴桐在高超音速导弹上的初步突破,妥善的收入打开的保密匣中,稍后放入保险柜内妥善保密保存。吴桐唇角扬起一抹笑意,是对自己工作的肯定。
第一步弹头材料的顺利推衍,似乎预示着,接下来的攻关顺利,吴桐趁着手热,开始了第二步的主要箭身材料研究。
在金属钨上,吴桐更看重的一点,是钨可提高钢的高温硬度。MC-4特种钢材的性能参数其实已经很优越了,吴桐在此基础上,以现有水平继续延展,作为主要弹体材料来使用。这一步推衍,是在原有基础上进行再度优化,对吴桐来说,依然不算太难。
设计模型,推衍参数,设计制备工艺···一系列的推衍,模拟,第二种主要弹体材料MCW-1,以金属钨为核心的金属基抗热材料,在吴桐的手中诞生。
金属基复合材料简称(MMCs),是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。
其增强材料大多为无机非金属,如陶瓷、碳、石墨及硼等,也可以用金属丝。它与聚合物基复合材料、陶瓷基复合材料以及碳/碳复合材料一起构成现代复合材料体系。
虽然是第一次玩金属基材料,但是一法通则百法通,快要两年的时间,经过众多的材料研发积累,吴桐在材料上,量变引起质变,在这次的攻关中,是突破式的爆发。几乎可以说是玩转上下,信手拈来,各种材料在她手中,推陈出新,举重若轻,是游刃有余的完全掌控。
崭新的微纳复合-氧化压制技术的诞生,又一次填补了国内技术空白,也是开创奠定了金属基材料的基础。
她以纳米级超高温陶瓷MC-4相与微米级钨基体共格增强,实现陶瓷相对难熔基体的增强和难熔金属的补强,进而实现材料高温强韧化、基体抗氧化和轻量化。
同时,通过表面氧化抑制设计,在基材表面原位生长形成梯度复合的陶瓷化的热防护层,与基体具有高的热匹配和强的冶金结合,以微纳复合原位反应制备纳米陶瓷相增强难熔金属基复合材料,实现了基材的高温、高强韧,与基体的一体化设计,进而实现高辐射、长时间抗氧化、抗烧蚀。
在吴桐的预测性能中,这种钨核心金属基抗热材料,拉抗性能搭配普通合金金属的上限,高温强度还能再度提升,轻松往3000MPa迈进,且能扛得住3000℃超高温下,无太大烧灼,能够保持近乎完美机械性能!
主要弹体材料再度完成,拉抗性能、耐高温性能要增强,但是同比重量不能再增加。弹体自重,也是影响速度和机动性能的关键因素。
??第三三二章 蓝图
并不是速度达到5马赫以上就可以被称之为“高超音速武器”。一般来说,传统导弹可以被分为两类:巡航导弹与弹道导弹。
巡航导弹的飞行原理更接近于飞机,它的弹道基本都在大气层内部,飞行阻力巨大,因此速度表现比较一般,大部分巡航导弹都处于亚音速级别,例如海对面的“战斧”巡航导弹的速度就只有0.8马赫。
但它的优点在于可以像飞机一样进行灵活的大过载机动,从而减少被拦截的概率。
弹道导弹的飞行原理更接近火箭,升空后,弹道导弹将会突破大气层,在几乎没有空气阻力的大气外滑翔较长距离,直到临近目标时才会重新进入大气层,实施下坠攻击。
因此,弹道导弹的飞行速度很容易就能突破巡航导弹的上限,但由于弹道导弹的飞行轨迹近似抛物线,容易被预测轨迹,从而被反导系统计算出拦截弹道的风险会更大,这是之前不可避免的硬伤。
造成这样硬伤的主要原因,是因为弹道导弹的燃料限制,为了达到尽可能大的射程,都必须严格的遵循抛物线。如果采用机动变轨,会消耗大量的燃料,这样洲际导弹可能会变成远程导弹,远程导弹可能会变成中程导弹。
其次是因为控制技术、材料和工艺不完善。
在大气层中反复的穿越,而且在末端还要精确的击中目标。需要有高超的控制手段和极高的测控精度。同时重返大气层又需要使导弹本身经受高温的考验。
所以,在相当长时间内,这种远程导弹的中段变轨都是无法实现的。
吴桐当然不会满足现状,只是做射程的增加的话,根本无需她费劲儿安排,切换N24高能燃料,就能做到的。她致力于改变这种现状,而且,天才的先辈们,已经做出了重大突破,钱氏弹道学功不可没。
只是,因为钱氏弹道学运用的艰涩,国内目前尚未有这方面的运用突破,吴桐想在这个基础上,完善利用钱氏弹道,做出运用方面零的跨越,让钱氏弹道,展示它该有的,震慑性且无可拦截性的辉煌成果。
在前面向陆骁咨询的探讨中,吴桐发掘出了乘波体弹头设计,这也是在助力增加新型弹道导弹变轨能力,为其蓄力。
只弹头的优化变革设计,吴桐深深觉得不够保险,她加了弹身助力设计。在经过细致推衍,并且模拟后,吴桐最终定下了,结合钱氏弹道学的助推段分离的设计。
点火后,导弹会快速钻升至临近空间,乘波体与助推段分离,在稠密大气层内高超音速机动,可以在大气层边缘和大气层内进行多次跳跃,也可以在大气层内或者大气层内外进行大范围横向机动,把中段的抛物线改成反复在大气层和太空中穿越的蛇形机动曲线,乘波体弹头还可以自动规避反导系统并对预定目标实施灌顶打击。
且在乘波体上升段推进器脱离后,能够不用如之前的不进行惯性弹道飞行,在钱氏弹道的衍射基础上,而再入大气开始高超音速滑翔,这种滑翔飞行位于大气层边缘或者大气层内,因此,对于现有以拦截弹道导弹弹头为主要想定而设计的反导系统而言,将会变成难以对付的目标,成为无可拦截的存在,且超越的速度,将能实现,一小时内全球到。